Beginn des Seitenbereichs:
Seitenbereiche:

  • Zum Inhalt (Zugriffstaste 1)
  • Zur Positionsanzeige (Zugriffstaste 2)
  • Zur Hauptnavigation (Zugriffstaste 3)
  • Zur Unternavigation (Zugriffstaste 4)
  • Zu den Zusatzinformationen (Zugriffstaste 5)
  • Zu den Seiteneinstellungen (Benutzer/Sprache) (Zugriffstaste 8)
  • Zur Suche (Zugriffstaste 9)

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Beginn des Seitenbereichs:
Seiteneinstellungen:

Deutsch de
English en
Suche
Anmelden

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Beginn des Seitenbereichs:
Suche:

Suche nach Details rund um die Uni Graz
Schließen

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche


Suchen

Beginn des Seitenbereichs:
Hauptnavigation:

Seitennavigation:

  • Universität

    Universität
    • Die Uni Graz im Portrait
    • Organisation
    • Strategie und Qualität
    • Fakultäten
    • Universitätsbibliothek
    • Jobs
    • Campus
    Lösungen für die Welt von morgen entwickeln – das ist unsere Mission. Unsere Studierenden und unsere Forscher:innen stellen sich den großen Herausforderungen der Gesellschaft und tragen das Wissen hinaus.
  • Forschungsprofil

    Forschungsprofil
    • Unsere Expertise
    • Forschungsfragen
    • Forschungsportal
    • Forschung fördern
    • Forschungstransfer
    • Ethik in der Forschung
    Wissenschaftliche Exzellenz und Mut, neue Wege zu gehen. Forschung an der Universität Graz schafft die Grundlagen dafür, die Zukunft lebenswert zu gestalten.
  • Studium

    Studium
    • Studieninteressierte
    • Infos für Studierende
  • Community

    Community
    • International
    • Am Standort
    • Forschung und Wirtschaft
    • Absolvent:innen
    Die Universität Graz ist Drehscheibe für internationale Forschung, Vernetzung von Wissenschaft und Wirtschaft sowie für Austausch und Kooperation in den Bereichen Studium und Lehre.
  • Spotlight
Jetzt aktuell
  • 24 Klicks im Advent
  • Masterstudium plus: Jetzt anmelden!
  • Crowdfunding entdecken
  • Klimaneutrale Uni Graz
  • Forscher:innen gefragt
  • Arbeitgeberin Uni Graz
Menüband schließen

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Beginn des Seitenbereichs:
Sie befinden sich hier:

Universität Graz Neuigkeiten Barrierefrei kommunizieren

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Donnerstag, 07.03.2013

Barrierefrei kommunizieren

Grundlagenforschung an der Uni Graz: Die Verbesserung organischer Halbleiter revolutioniert auch die Technik von Fotovoltaik-Anlagen. Foto: C. Nöhren /pixelio.de

Grundlagenforschung an der Uni Graz: Die Verbesserung organischer Halbleiter revolutioniert auch die Technik von Fotovoltaik-Anlagen. Foto: C. Nöhren /pixelio.de

Die Elektronenverteilung in einer einzigen Moleküllage organischer Moleküle auf einem metallischen Träger wird mithilfe des photoelektrischen Effekts untersucht.

Die Elektronenverteilung in einer einzigen Moleküllage organischer Moleküle auf einem metallischen Träger wird mithilfe des photoelektrischen Effekts untersucht.

Uni Graz-PhysikerInnen bauen Brücken zwischen Molekülen

Preiswerte und biegsame Bildschirme für den Arbeitsplatz, effiziente und leistbare Fotovoltaik-Anlagen für das Eigenheim: Die mechanische Flexibilität organischer Moleküle erlaubt in Zukunft vollkommen neue Perspektiven in der Halbleitertechnologie. Jedoch wird ihr großflächiger Einsatz in technischen Anwendungen dadurch erschwert, dass sie elektrischen Strom schlecht transportieren. Dass die Leitfähigkeit organischer Materialien unter bestimmten Bedingungen erhöht werden kann, klärten nun WissenschafterInnen der Karl-Franzens-Universität Graz in einer gemeinsamen Untersuchung mit KollegInnen der Universitäten Würzburg und Hiroshima, Japan, auf. Die Ergebnisse dieser Grundlagenforschung erschienen vor kurzem in der Fachzeitschrift „Nature Communications“.


Verbesserte Materialien versprechen neue Anwendungsgebiete: So haben zum Beispiel herkömmliche Fotovoltaik-Anlagen – sie erledigen die Umwandlung von Sonnenlicht zu elektrischer Energie – derzeit einen Wirkungsgrad von maximal rund 20 Prozent bei vergleichsweise hohen Kosten. „Hier können organische Halbleiter eine vielversprechende Alternative bieten“, erklärt Ass.-Prof. Dr. Peter Puschnig, Physiker an der Uni Graz sowie Ko-Autor des wissenschaftlichen Artikels. „Allerdings leiten diese neuartigen Materialien elektrischen Strom eher schlecht.“ Die Ursache dieser mangelnden Effizienz liegt in erster Linie bei der schwachen Bindung oder Kommunikation zwischen den einzelnen Molekülen. „Die Elektronen müssen für den Transport von einem Molekül zum nächsten eine Barriere überwinden. Wir konnten nun nachweisen, dass über die Wechselwirkung der Moleküle mit einem metallischen Träger auch der Elektronentransport innerhalb der Molekülschicht verbessert wird “, führt der Physiker aus. Puschnig zeichnet für die theoretische Beschreibung und die numerische Simulation der Untersuchung verantwortlich; seine KollegInnen aus Würzburg und Hiroshima stellten die Molekülfilme her und führten die experimentelle Charakterisierung durch.


Das Experiment
In einem Ultrahochvakuum brachten PhysikerInnen eine einzelne geordnete Schicht organischer Moleküle durch Aufdampfen auf ein metallisches Trägermaterial, einen so genannten „Silbereinkristall“, auf. So angeordnet, zeigten die Moleküle ein ungewöhnliches Verhalten: „Es stellte sich heraus, dass Elektronenwolken benachbarter Moleküle einen gemeinsamen Zustand mit dem Metall ausbilden, wodurch benachbarte Moleküle animiert werden, miteinander zu kommunizieren“, erklärt Puschnig. Dadurch wird der Austausch von Ladungen erleichtert und die Leitfähigkeit erhöht. Diese Erkenntnis ist ein erster Schritt in Richtung Weiterentwicklung in der Materialtechnologie.
Das Projekt wurde vom Österreichischen Wissenschaftsfonds FWF unterstützt und ist im universitären Forschungsschwerpunkt „Modelle und Simulation“ der Universität Graz verankert.


Publikation in der Fachzeitschrift „Nature Communications“
Substrate-mediated band-dispersion of adsorbate molecular states. M. Wießner, J. Ziroff, F. Forster, M. Arita, K. Shimada, P. Puschnig, A. Schöll & F. Reinert. Nature Communications, DOI: 10.1038/ncomms2522

 

Rückfragen:
Ass.-Prof. Dr. Peter Puschnig
Institut für Physik
Karl-Franzens-Universität Graz
+43 316 380 5230
E-Mail: peter.puschnig(at)uni-graz.at

Erstellt von Konstantinos Tzivanopoulos

Weitere Artikel

Chemische Weihnachtsshow der Uni Graz: Explosiver Abend im Schauspielhaus

Anfang Dezember verwandelte die Universität Graz das Schauspielhaus in ein Labor: Bei „Chemical Life“ inszenierten Lehramtsstudierende eine chemische Weihnachtsshow für steirische Schulklassen – mit Ethanol-Raketen, Stickstoff-Schnee und leuchtenden Effekten. Ein Abend, der Lust auf das Chemie-Studium machen soll.

Zug um Zug: Koralmbahn beschleunigt Austausch zwischen den Unis Graz und Klagenfurt

Vormittags Vorlesung an der Uni Klagenfurt, nachmittags Seminar an der Uni Graz: Österreichs längster Tunnel und eine Fahrtzeit von etwa 45 Minuten machen‘s leicht möglich. Mit der Koralmbahn erhöht sich das Tempo der Vernetzung beider Universitätsstandorte. Die Zusammenarbeit baut auf bereits bestehenden Kooperationen auf – etwa in den Bereichen der Lehramtsausbildung, der Slawistik sowie als Arbeitgeberin sind die Hochschulen gut abgestimmt.

Dem Urknall auf der Spur: Uni Graz erhält 1,5 Mio Euro für Physik-Doktoratsausbildung

Der österreichische Wissenschaftsfonds FWF wählte neben acht anderen das Doktoratsprogramm in der Theoretischen Elementarteilchenphysik der Universität Graz für Gelder aus dem Doc.funds aus. Sechs Nachwuchs-Wissenschaftler:innen werden für 3,5 Jahre finanziert. Sie werden grundlegend neue Erkenntnisse über den Ursprung der Welt gewinnen.

Von Transfrauen und Knieprothesen: sportwissenschaftliche Preise vergeben

Besser gehen mit Prothese, Übergewicht erfolgreich loswerden, wirkungsvoller trainieren, mehr Fairness für Trans-Personen im Sport: Mit diesen Themen befassten sich die Studierenden der Uni Graz, die am 3. Dezember 2025 für ihre Masterarbeiten mit den sportwissenschaftlichen Preisen ausgezeichnet wurden.

Beginn des Seitenbereichs:
Zusatzinformationen:

Universität Graz
Universitätsplatz 3
8010 Graz
  • Anfahrt und Kontakt
  • Kommunikation und Öffentlichkeitsarbeit
  • Moodle
  • UNIGRAZonline
  • Impressum
  • Datenschutzerklärung
  • Cookie-Einstellungen
  • Barrierefreiheitserklärung
Wetterstation
Uni Graz

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche

Beginn des Seitenbereichs:

Ende dieses Seitenbereichs. Zur Übersicht der Seitenbereiche