DEPARTMENT | AlgNTH | Doctoral Program
Discrete Mathematics |
Foto: Severin Nowacki |
Prof. Dr. Karin Baur | |
Research: |
My research interests lie in algebraic, geometric and combinatorial methods in
representation theory (originally of Lie algebras and more recently of algebras...): Cluster algebras, cluster categories, categorifications of representations, module categories; Frieze patterns, surface algebras, triangulations and tilings; Orbit structures, parabolic subalgebras, Richardson elements. | |
E-mail: | baurk@uni-graz.at
| |
Phone: | ++ 43 - 316 380 - 5150 | |
Address: |
Institut für Mathematik und wissenschaftliches Rechnen Universität Graz Heinrichstrasse 36 A-8010 Graz Austria | |
At the department: | |
TEACHING | PUBLICATIONS | GROUP | LINKS | FOTOS | WHY MATHS |
Conferences |
Organizers: T. Arawaka, K. Baur, V. Kac, A. Moreau. Organizers: K. Baur, L. Hille. Organizers: K. Baur, L. Hille. Organizers: K. Baur, L. Hille. Organizers: K. Baur, A. Premet, D. Testerman. Organizers: K. Baur, A. Moreau. |
Broader audience talks | Talk on frieze patterns at Tag der Mathematik , Graz 2013, slides:
Vortrag.
Inaugural lecture, newer . June 13, 2012, short version of the slides: Einführungsvorlesung. Vortrag an der Seniorenuniversität Züt , März 2011, Folien: Triangulierungen: Dreiecke als Grundbausteine von Polygonen. Inaugural lecture, old , April 2008. This lecture has been taped and can be accessed at Einführungsvorlesung. |
Seminars/Reading groups |
Starting from November 7, 2013 we have a bi-weekly reading group
on Quiver with potentials and their representations I:
Mutations. by H. Derksen, J. Weyman and A. Zelevinsky.
In the fall semester 2010 we had a reading group in the area of cluster algebras and total positivity, see info In the fall semester 2009 we had a student seminar/reading group on the article Cluster algebras, quiver representations and triangulated categories, see pdf-file, by Bernhard Keller. Seminar webpage: Cluster algebras and triangulated surfaces . |
m-th powers | C. Ducrest has written an algorithm to compute the components of a certain translation quiver, the so-called m-th power of a quiver of diagonals. The algorithm is available at Algorithm. There is also a short documentation explaining how it works at Documentation. |