Approximate convexity and Korovkin type theorems

Zsolt Páles
(jointly with Judit Makó)

University of Debrecen, Institute of Mathematics

49th International Symposium on Functional Equations
Graz–Mariatrost, June 19–26, 2011
Approximation by positive operators I.

The Korovkin Approximation Theorem
Let $T_n : C([0, 1]) \to C([0, 1])$ be a sequence of positive linear operators such that
$$\|T_n p_i - p_i\| \to 0 \quad (i = 0, 1, 2),$$
where $p_i(x) := x^i$. Then
$$\|T_n f - f\| \to 0 \quad (f \in C([0, 1])).$$

Corollary
Let $T : C([0, 1]) \to C([0, 1])$ be a positive linear operator such that
$$Tp_i = p_i \quad (i = 0, 1, 2).$$
Then
$$Tf = f \quad (f \in C([0, 1])).$$
Approximation by positive operators II.

A Generalized Korovkin Theorem

Let \(T_n : C([0, 1]) \to C([0, 1]) \) be a sequence of positive linear operators such that

\[
\| T_n p_i - p_i \| \to 0 \quad (i = 0, 1) \quad \text{and} \quad \| T_n g - g \| \to 0,
\]

where \(g \in C([0, 1]) \) is a strictly convex function. Then

\[
\| T_n f - f \| \to 0 \quad (f \in C([0, 1])).
\]

Corollary

Let \(T : C([0, 1]) \to C([0, 1]) \) be a positive linear operator such that

\[
T p_i = p_i \quad (i = 0, 1) \quad \text{and} \quad T g = g,
\]

where \(g \in C([0, 1]) \) is a strictly convex function. Then

\[
T f = f \quad (f \in C([0, 1])).
\]
An Approximation Problem

Let $T_n : C([0, 1]) \to C([0, 1])$ a sequence of positive linear operators such that

$$\|T_n p_i - p_i\| \to 0 \quad (i = 0, 1) \quad \text{and} \quad \|T_n g - h\| \to 0,$$

where $g, h \in C([0, 1])$ given functions. Then what can be expected about the limit of the sequences

$$T_n f \quad (f \in C([0, 1]))?$$

Subproblem

Let $T : C([0, 1]) \to C([0, 1])$ be a positive linear operator such that

$$Tp_i = p_i \quad (i = 0, 1) \quad \text{and} \quad Tg = h,$$

where $g, h \in C([0, 1])$ are given functions. Then what can be expected about T?
Positive Operators and Convexity

Theorem

Let $T : C([0, 1]) \rightarrow C([0, 1])$ be a positive linear operator such that $Tp_i = p_i \ (i = 0, 1)$. Then, for every convex $g \in C([0, 1])$,

$$g \leq Tg \leq g(0)p_0 + (g(1) - g(0))p_1.$$

In particular,

$$p_2 \leq Tp_2 \leq p_1.$$

Proof

By the convexity of g and the positivity of T,

$$g \leq g(0)p_0 + (g(1) - g(0))p_1 \quad \Rightarrow \quad Tg \leq g(0)p_0 + (g(1) - g(0))p_1.$$

On the other hand, for every $x \in]0, 1[$ there exists $c \in \mathbb{R}$ such that

$$(g(x) - cx)p_0 + cp_1 \leq g \quad \Rightarrow \quad (g(x) - cx)p_0 + cp_1 \leq Tg \quad \Rightarrow \quad g(x) \leq (Tg)(x).$$
A Korovkin-type Theorem

Let $T_n : C([0, 1]) \to C([0, 1])$ be a sequence of positive linear operators such that

$$T_n p_i \to p_i \quad (i = 0, 1) \quad \text{és} \quad T_n g \to g(0)p_0 + (g(1) - g(0))p_1,$$

where $g \in C([0, 1])$ is a strictly convex function. Then

$$T_n f \to f(0)p_0 + (f(1) - f(0))p_1 \quad (f \in C([0, 1])).$$

Corollary

Let $T : C([0, 1]) \to C([0, 1])$ be a positive linear operator such that

$$Tp_i = p_i \quad (i = 0, 1) \quad \text{and} \quad Tg = g(0)p_0 + (g(1) - g(0))p_1,$$

where $g \in C([0, 1])$ is a strictly convex function. Then

$$Tf = f(0)p_0 + (f(1) - f(0))p_1 \quad (f \in C([0, 1])).$$
Approximation by positive operators V.

Sketch of The Proof

Without loss of generality, we may assume that \(g(0) = g(1) = 0 \).
Let \(f \in C([0, 1]) \). For every \(\varepsilon > 0 \),
\[
\sup_{0 < x < 1} \left| \frac{f(x) - (f(0) + (f(1) - f(0))x)}{-g(x)} \right| - \varepsilon < \infty.
\]

Thus, for all \(\varepsilon > 0 \), there exists \(K > 0 \) such that
\[
|f - (f(0)p_0 + (f(1) - f(0))p_1)| \leq \varepsilon + K(-g).
\]

Hence
\[
|T_n[f - (f(0)p_0 + (f(1) - f(0))p_1)]| \leq T_n|f - (f(0)p_0 + (f(1) - f(0))p_1)|
\leq \varepsilon + KT_n(-g).
\]

Therefore
\[
\limsup_{n \to \infty} \| T_n[f - (f(0)p_0 + (f(1) - f(0))p_1)] \| \leq \varepsilon.
\]
Theorem
Let \(T : C([0, 1]) \to C([0, 1]) \) be a positive linear operator such that \(Tp_0 = p_0 \) and \(Tp_1 = p_1 \). Then the following are equivalent:

(i) \(T^n f \to f(0)p_0 + (f(1) - f(0))p_1 \) (\(f \in C([0, 1]) \)).

(ii) \(T^n g \to g(0)p_0 + (g(1) - g(0))p_1 \) for some strictly convex function \(g \in C([0, 1]) \).

(iii) Every fixed point of \(T \) is of the form \(ap_0 + bp_1 \).

Corollary
Let \(T : C([0, 1]) \to C([0, 1]) \) be a positive linear operator such that \(Tp_0 = p_0 \) and \(Tp_1 = p_1 \). Assume that there exists a strictly concave function \(g \in C([0, 1]) \) such that \(g(0) = g(1) = 0 \) and \(Tg \leq \gamma g \) for some \(0 \leq \gamma < 1 \). Then

\[
T^n f \to f(0)p_0 + (f(1) - f(0))p_1 \quad (f \in C([0, 1])).
\]
Averaging operators I.

Definition

Let μ be a Borel regular probability measure on $[0, 1]$ with a non-singleton support. Denote by μ_1 the first moment of μ and define the **averaging operator** $T_\mu : C([0, 1]) \rightarrow C([0, 1])$ by

$$(T_\mu f)(s) := \begin{cases}
\int_{[0,1]} f\left(\frac{st}{\mu_1}\right) d\mu(t) & \text{if } s \in [0, \mu_1], \\
\int_{[0,1]} f\left(\frac{s+t-st-\mu_1}{1-\mu_1}\right) d\mu(t) & \text{if } s \in [\mu_1, 1].
\end{cases}$$

Theorem

Under the above assumptions, $T_\mu : C([0, 1]) \rightarrow C([0, 1])$ is a positive linear operator such that $T_\mu p_0 = p_0$ and $T_\mu p_1 = p_1$. Moreover, all fixed points of T_μ are of the form $ap_0 + bp_1$ for some $a, b \in \mathbb{R}$.
Generalized Hermite–Hadamard inequality I.

Theorem

Let μ be a Borel regular probability measure on $[0, 1]$, with a non-singleton support. Denote by μ_1 the first moment of μ. If $f : I \to \mathbb{R}$ is a convex function, then

$$f(\mu_1 x + (1 - \mu_1)y) \leq \int_{[0,1]} f(tx + (1 - t)y) \, d\mu(t) \quad (x, y \in I).$$

Proof

Let $x, y \in I$, $x \neq y$. Then, by the convexity of f, there exists $c \in \mathbb{R}$, such that

$$f(\mu_1 x + (1 - \mu_1)y) + c(t - \mu_1) \leq f(tx + (1 - t)y) \quad (t \in [0, 1]).$$

Integrating this inequality by the variable t with respect to the measure μ, the statement follows.
Generalized Hermite–Hadamard Inequality II.

The Inverse Problem

Let μ be a Borel regular probability measure on $[0, 1]$ with a non-singleton support. Let $f : I \to \mathbb{R}$ be a continuous function such that

$$f(\mu_1 x + (1 - \mu_1)y) \leq \int_{[0,1]} f(tx + (1 - t)y) d\mu(t) \quad (x, y \in I).$$

Does this imply the convexity of f?
A more general problem

Let \(\mu \) be a Borel regular probability measure on \([0, 1]\) with a non-singleton support. Let \(\varepsilon : I \times I \to \mathbb{R} \) be an error function such that \(\varepsilon(x, x) = 0 \) for all \(x \in I \) and let \(f : I \to \mathbb{R} \) be a continuous function such that

\[
f(\mu_1 x + (1 - \mu_1) y) \leq \int_{[0,1]} f(tx + (1 - t)y) d\mu(t) + \varepsilon(x, y) \quad (x, y \in I).
\]

What can be said about \(f \)? Is \(f \) approximatively convex in some sense?

Contributions to Approximate Convexity

Theorem

Let \(\mu \) be a Borel regular probability measure on \([0, 1]\) with a non-singleton support. Let \(\varepsilon : I^2 \rightarrow \mathbb{R} \) such that \(\varepsilon(x, x) = 0 \) for all \(x \in I \) and \(\varepsilon^* : I^2 \times [0, 1] \rightarrow \mathbb{R} \) be a function such that, for all \(x, y \in I \),

\[
\varepsilon^*(x, y, 0) = \varepsilon^*(x, y, 1) = 0 \quad \text{and} \\
\varepsilon^*(x, y, s) \geq \begin{cases} \\
\int_{[0,1]} \varepsilon^*(x, y, \frac{st}{\mu_1}) d\mu(t) + \varepsilon(x, \frac{\mu_1 - s}{\mu_1} x + \frac{s}{\mu_1} y) & s \in [0, \mu_1], \\
\int_{[0,1]} \varepsilon^*(x, y, \frac{t+s-st-\mu_1}{1-\mu_1}) d\mu(t) + \varepsilon(\frac{1-s}{1-\mu_1} x + \frac{s-\mu_1}{1-\mu_1} y, y) & s \in [\mu_1, 1]. \\
\end{cases}
\]

Then every \(f : I \rightarrow \mathbb{R} \) continuous solution of the functional inequality

\[
f(\mu_1 x + (1 - \mu_1) y) \leq \int_{[0,1]} f(t x + (1 - t)y) d\mu(t) + \varepsilon(x, y) \quad (x, y \in I)
\]

also fulfills

\[
f(t x + (1 - t)y) \leq tf(x) + (1 - t)f(y) + \varepsilon^*(x, y, t) \quad (x, y \in I, t \in [0, 1]).
\]
An Approximative Hermite–Hadamard Inequality III.

Sketch of the proof

Let $x, y \in I$ be fixed and define

$$
\phi(t) := f(tx + (1 - t)y), \quad \psi(t) := \varepsilon^*(x, y, t) \quad (t \in [0, 1]),
$$

$$
e(t) := \begin{cases}
 \varepsilon(x, \frac{\mu_1-t}{\mu_1} x + \frac{t}{\mu_1} y) & t \in [0, \mu_1], \\
 \varepsilon(\frac{1-t}{1-\mu_1} x + \frac{t-\mu_1}{1-\mu_1} y, y) & s \in [\mu_1, 1].
\end{cases}
$$

Then $\psi(0) = \psi(1) = 0$ and ϕ, ψ, e are continuous. The conditions of
the theorem yield

$$
\phi - \mathcal{T}_\mu \phi \leq e \leq \psi - \mathcal{T}_\mu \psi.
$$

Iterating this and adding up the inequalities so obtained, we get

$$
\mathcal{T}_\mu^n \phi - \mathcal{T}_\mu^{n+1} \phi \leq \mathcal{T}_\mu^n \psi - \mathcal{T}_\mu^{n+1} \psi \quad \Rightarrow \quad \phi - \mathcal{T}_\mu^{n+1} \phi \leq \psi - \mathcal{T}_\mu^{n+1} \psi.
$$

Now passing the limit $n \to \infty$, the result follows.
Corollary

Let μ be a Borel regular probability measure on $[0, 1]$ with a non-singleton support. Let $\varepsilon > 0$ and $q \in]0, 1[$. Then every continuous solution $f : I \rightarrow \mathbb{R}$ of the functional inequality

$$f(\mu_1 x + (1 - \mu_1) y) \leq \int_{[0,1]} f(tx + (1 - t)y) d\mu(t) + \varepsilon |x - y|^q \quad (x, y \in I)$$

also satisfies

$$f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y) + \varepsilon^* |x - y|^q \min\left(\frac{t^q}{\mu_1^q}, \frac{(1 - t)^q}{(1 - \mu_1)^q}\right)$$

for all $x, y \in I$ and $t \in [0, 1]$, where

$$\varepsilon^* := \frac{\varepsilon}{1 - \max\left(\int_{[0,1]} \frac{t^q}{\mu_1^q} d\mu(t), \int_{[0,1]} \frac{(1 - t)^q}{(1 - \mu_1)^q} d\mu(t)\right)}.$$
We apply the previous Corollary when $\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$.

Corollary (Házy–Páles [10])

Let $\varepsilon > 0$ and $q \in]0, 1[$. Then every continuous solution $f : I \to \mathbb{R}$ of

$$f\left(\frac{x+y}{2}\right) \leq \frac{f(x) + f(y)}{2} + \varepsilon|x-y|^q \quad (x, y \in I)$$

also satisfies

$$f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) + \frac{\varepsilon 2^q |x-y|^q}{1 - 2^q - 1} \min(t^q, (1-t)^q)$$

for all $x, y \in I$ and $t \in [0, 1]$.
Z. Boros.
An inequality for the Takagi function.

S. J. Dilworth, R. Howard, and J. W. Roberts.
Extremal approximately convex functions and estimating the size of convex hulls.

S. J. Dilworth, R. Howard, and J. W. Roberts.
Extremal approximately convex functions and the best constants in a theorem of Hyers and Ulam.

S. J. Dilworth, R. Howard, and J. W. Roberts.
A general theory of almost convex functions.

R. Ger.
Almost approximately convex functions.

J. W. Green.
Approximately convex functions.

D. H. Hyers and S. M. Ulam.
Approximately convex functions.

A. Házy.
On the stability of t-convex functions.

A. Házy and Zs. Páles.
On approximately midconvex functions.

A. Házy and Zs. Páles.
On approximately t-convex functions.

A. Házy and Zs. Páles.
On a certain stability of the Hermite–Hadamard inequality.

M. Laczkovich.
The local stability of convexity, affinity and of the Jensen equation.

J. Makó and Zs. Páles.
Approximate convexity of Takagi type functions.

J. Mrowiec.
Remark on approximately Jensen-convex functions.

J. Mrowiec.
On the stability of Wright-convex functions.
Approximately midconvex functions.

A. Mureńko, Ja. Tabor, and Jó. Tabor.
Applications of de Rham Theorem in approximate midconvexity.

C. T. Ng and K. Nikodem.
On approximately convex functions.

K. Nikodem, T. Riedel, and P. K. Sahoo.
The stability problem of the Hermite-Hadamard inequality.

Zs. Páles.
On approximately convex functions.

A. W. Roberts and D. E. Varberg.

Ja. Tabor and Jó. Tabor.
Generalized approximate midconvexity.
Ja. Tabor and Jó. Tabor.
Takagi functions and approximate midconvexity.

Ja. Tabor, Jó. Tabor, and M. Żołdak.
Approximately convex functions on topological vector spaces.

Ja. Tabor, Jó. Tabor, and M. Żołdak.
Optimality estimations for approximately midconvex functions.